
SPSRB Common Standards Group

 1 Version 1.0
 6/18/2009

SPSRB Common Standards Group

General Programming

Principles and Guidelines

Version 1.0
June, 2009

SPSRB Common Standards Group

 2 Version 1.0
 6/18/2009

VERSION NUMBER IDENTIFIER

The document version number which also corresponds to the Document Control Number
(DCN) identifies whether the document is a working copy, final, revision, or update,
defined as follows:

• Working copy or Draft: a document not yet finalized or ready for distribution;
sometimes called a draft. Use 0.1A, 0.1B, etc. for unpublished documents.

• Final: the first definitive edition of the document. The final is always identified
as Version 1.0.

• Revision: an edition with minor changes from the previous edition, defined as
changes affecting less than one-third of the pages in the document. The version
numbers for revisions 1.1 through 1.9, 2.1 through 2.9, and so forth. After nine
revisions, any other changes to the document are considered an update. A revision
in draft, i.e. before being re-baselined should be numbered as 1.1A, 1.1B, etc.

• Update: an edition with major changes from the previous edition, defined as
changes affecting more than one-third of the pages in the document. The version
number for an update is always a whole number (Version 2.0, 3.0, 4.0, and so
forth).

SPSRB Common Standards Group

 3 Version 1.0
 6/18/2009

DOCUMENT HISTORY
DOCUMENT REVISION LOG

The Document Revision Log identifies the series of revision to this Document since the
baseline release. This page will become a permanent part of this document.

DOCUMENT TITLE: General Programming Principles and Guidelines

DOCUMENT CHANGE HISTORY
Revision

No. Date Revision Originator Project Group CCR Approval #
and Date

1.0 June 18
2009

Initial release SPSRB approved
June 17 2009

SPSRB Common Standards Group

 4 Version 1.0
 6/18/2009

LIST OF CHANGES

DOCUMENT TITLE: General Programming Principles and Guidelines

LIST OF CHANGE-AFFECTED PAGES/SECTIONS/APPENDICES
Version
Number Date Changed

by Page Section Description of Change(s)

SPSRB Common Standards Group

 5 Version 1.0
 6/18/2009

TABLE OF CONTENTS

1. Introduction.. 6

2. This Document ... 7

3. Very General Programming Principles ... 7

3.1 Program Unit Organization... 8
3.2 Program Unit Size... 8
3.3 Naming Conventions .. 9
3.4 Input/Output:... 10
3.5 Readability .. 10
3.6 Indentation .. 12
3.7 Nesting .. 13
3.8 Headers ... 14

3.8.1 Sample Header .. 15
3.9 Variable declarations .. 16
3.10 Check Return Values .. 16
3.11 No Hardcoding.. 17

APPENDIX A.. 18

Sample Program compliant with General Programming Principles 18

SPSRB Common Standards Group

 6 Version 1.0
 6/18/2009

1. Introduction

The National Environmental Satellite Data Distribution Service (NESDIS)
develops algorithms to transform environmental satellite images of the Earth and its
atmosphere into meaningful environmental data, and does so in a full-time operational
manner. Software developed within NESDIS has in the past been developed in very
different manners by the differing entities which comprise NESDIS. This has lead to
software written in various programming languages, in idiosyncratic styles, and often
suffering from a documentation deficit. Often the resulting software is very costly to
maintain as documentation may be inadequate, the source code may have been mislaid,
the code may be hard to read and understand, and the original developers may have
retired or be unfunded to maintain old code.

The purpose of developing common software programming standards is to reduce
the cost of the software lifecycle, a trajectory from initial research and software
development to operational use and finally through to divestiture and retirement.
Implementation of the forthcoming Satellite Products and Services Review Board
(SPSRB) standards lifecycle processes will see a shift in costs away from operations and
maintenance towards upfront costs incurred upon developers and scientists. While
individual developers or scientists may see no benefit from complying to the standards
process NESDIS as a whole will benefit. The initial time spent by a scientist thoroughly
documenting code will more than repay itself through much lower operations and
maintenance costs over the many years, or decades, in which that product is being
generated operationally. It is intended that the costs of implementing common software
standards will be funded through the Office of Systems Development (OSD) Product
System Development and Implementation (PSDI) process, and must be included in
relevant budgets and projects plans when applying for PSDI funds.

Having common programming standards used by the Center for Satellite
Applications and research (STAR), the Office of Satellite Data Processing and
Distribution (OSDPD), GOES-R, and the NPOESS Data Exploitation (NDE) Project, will
eventually produce a software catalog that:

 has a common look and structure,
 is well documented,
 adheres to best programming practices,
 is easily readable and understandable,
 behaves in a standard manner (exception handling, file input/output),
 is modular and reusable,
 is robust,
 is readily portable (platform independent),
 is written in a widely used supported language,
 inexpensive to implement and maintain operationally,
 and uses common shared libraries.

SPSRB Common Standards Group

 7 Version 1.0
 6/18/2009

2. This Document

This document will serve as a general programming standards document
describing standards that apply to all languages and types of software. Details specific to
a particular language will be described in individual documents pertaining to different
programming or scripting languages.

The aim of this document is to provide a general introduction to, and the rationale
behind, software programming standards common to all software and languages. Instead
of having extremely similar introductions to documents describing the standards for
various languages, it was decided that a single overview document would be produced
and standards specific to individual languages would be addressed in a set of shorter
documents specific to various languages supported by OSDPD.

It is recognized that certain stylistic suggestions which make code easier to read
(e.g. lining up attributes, or using all lower case or mixed case) are subjective and
therefore should not have the same weight as techniques and practices that are known to
improve code quality. For this reason, the standards within documents produced by the
SPSRB Common Standards Group are divided into three components; Standards,
Guidelines and Recommendations (SGRs):

a) Standards (***): Aimed at ensuring portability, readability and robustness.
Compliance with this category is mandatory.

b) Guidelines (**): Good practices. Compliance with this category is strongly
encouraged. The case for deviations will need to be argued by the programmer.

c) Recommendations (*): Compliance with this category is optional, but is encouraged
for consistency.

The term program unit will be used herein to refer to main programs, scripts, functions,
modules and subroutines.

3. Very General Programming Principles

Keep it simple stupid (KISS)

Eric S. Raymond, in his book The Art of Unix Programming, summarizes the
Unix philosophy as the widely-used engineering philosophy, "Keep it Simple, Stupid"
(KISS Principle). He then describes how he believes this overall philosophy is applied as
a cultural Unix norm:

• Rule of Simplicity: Design for simplicity; add complexity only where you must.
• Rule of Modularity: Write simple parts connected by clean interfaces.

SPSRB Common Standards Group

 8 Version 1.0
 6/18/2009

• Rule of Clarity: Clarity is better than cleverness.
• Rule of Composition: Design programs to be connected to other programs.
• Rule of Transparency: Design for visibility to make inspection and debugging

easier.
• Rule of Parsimony: Write a big program only when it is clear by demonstration

that nothing else will do.
• Rule of Repair: When you must fail, fail noisily and as soon as possible.
• Rule of Economy: Programmer time is expensive; conserve it in preference to

machine time.
• Rule of Generation: Avoid hand-hacking; write programs to write programs when

you can.
• Rule of Optimization: Prototype before polishing; get it working before you

optimize it.
• Rule of Extensibility: Design for the future, because it will be here sooner than

you think.

From: http://en.wikipedia.org/wiki/Unix_philosophy

The programming principles described here and in the documents specific to
individual languages in general adhere to the “KISS” principles above.

3.1 Program Unit Organization
(***) Elements of the program units shall include the following and shall be organized as
shown:

a. program unit identifier,
b. header,
c. INCLUDE files,
d. specification statements,
e. DATA or parameter statements for constants,
f. statement function statements,
g. executable statements,
h. statements to stop the execution of the program unit.

3.2 Program Unit Size
(*) It is recommended that each program unit is kept as small and simple as possible to
perform a specific task. Use multiple, smaller routines with well-defined functions rather
than a larger routine that does a lot of things. Unwieldy program units spanning hundreds
of lines should be examined to see if they can be segmented.

SPSRB Common Standards Group

 9 Version 1.0
 6/18/2009

3.3 Naming Conventions
(*) There is no standard for naming conventions, as code will work with all names
composed of recognized characters. That is why they are called naming “conventions”,
not naming “standards”.

The only required standard is for what names can NOT be: Names can not be
identical to reserved words or implementation supplied function names.

In addition, naming conventions within a programming community are under continual
development, as programmers communicate with each other and agree to adopt particular
conventions.

When writing code, the names of files, subroutines, functions, modules and variables
created by a programmer are often up to the programmer. A possible exception could be
if a project to integrate several algorithms from disparate sources into a single program
unit developed standardized abbreviations for common variables. Left to their own
devices a programmer can choose to make the names long or short, descriptive or useless,
clear or confusing. A lot depends on the mindset of the programmer. Will this code be
reused? Is this "quick and dirty" code? Is this code so clear that it is self-explanatory?
As this document deals with code that will be transitioned to operations and could
potentially remain in operations for many years it is important that the code be readily
maintainable and easily understood.

The names of files, subroutines, functions and variables can be extremely useful in
making code more readable. Choosing names may seem not very important, but insisting
on meaningful names helps a programmer to organize thoughts and produce code that is
readable and reviewable.

Avoid names that look alike by differing only in characters that resemble each other, as
do 2 and z, 0 and O, 5 and S, or I and 1.

Name program units are to indicate their purpose. Familiarize yourself with the STAR
Common Library when it becomes available. This serves two main purposes: 1) You may
find a library routine that you can use to implement your desired function; 2) You should
avoid using names that are similar to library routines.

Name symbolic variables to indicate what they are, not what values they may contain.

Names should be as mnemonically descriptive as possible, subject to constraints imposed
by language standards.

SPSRB Common Standards Group

 10 Version 1.0
 6/18/2009

Names shall not be identical to reserved words or implementation supplied function
names. Names should not resemble reserved words or implementation-supplied function
names.

Guideline: Programmers should name all variables, including counters, according to the
above guidelines.

3.4 Input/Output:
(*) In addition to identifying input and output variables in the header, it is helpful for
readability and clarity to separate Input, Output, and Processing functions in a program so
that all Input functions precede all Processing functions, followed by all Output
functions. Exceptions to this rule occur when memory constraints require dynamic
allocation of memory within the processing function. When dynamic allocation is used,
input and output functions within processing functions should be clearly identified by
comments that identify the input/output variables with references to the Preamble and/or
design documents.

3.5 Readability
Consistency is the key to making programs easily readable.

(***) 1 Pagination:
Begin each program unit at the top a new page.

(***) 2 Characters per line of code:
Use a maximum of 90 characters per line.

(***) 3 Alphabetic Case:
Alphabetic case shall be used consistently to enhance readability throughout a program.

(***) 4 Compound Expressions:
Place spaces before and after relational operators, reserved words, identifiers, and
arithmetic operators to enhance readability of compound expressions. Refer to examples
below.

GOOD: ***

C = A + B * X

GOOD: ***

c = a + b * x

SPSRB Common Standards Group

 11 Version 1.0
 6/18/2009

BAD: ***
C = a + B * x

Of course, it would be even better to use meaningful variable names other than A, B, C
and X!

Best: ***

tempF = (tempC – 32.0) * 5 / 9

Blocking with blank lines shall be used consistently to enhance readability throughout a
program. A comment line shall be separated from a preceding executable line of code by
a single blank line. All comment lines that are followed by an executable line of code
should be separated from the executable line of code either by a single blank line or by no
blank line. This is an optional matter of style that should be used consistently throughout
a program.

GOOD: ***
 ! Compute the sides of a right triangle

 a = x + 6
 b = y / 4.5

 ! Compute the square of the hypotenuse

c_squared = a * a + b * b

GOOD: ***
 ! Compute the sides of a right triangle
 a = x + 6
 b = y / 4.5

 ! Compute the square of the hypotenuse

c_squared = a * a + b * b

BAD: ***

! Compute the sides of a right triangle
 a = x + 6
 b = y / 4.5
 ! Compute the square of the hypotenuse
 c_squared = a * a + b * b

SPSRB Common Standards Group

 12 Version 1.0
 6/18/2009

BAD: ***

! Compute the sides of a right triangle

 a = x + 6
 b = y / 4.5

 ! Compute the square of the hypotenuse
 c_squared = a * a + b * b

The evaluation of logical and arithmetic expressions shall be clarified through the use of
parentheses and spaces.

GOOD: ***
 pk = pk - 1.0 + (0.5 * REAL(ning))

BAD: ***
 pk = pk - 1.0 + 0.5 * REAL(ning)

3.6 Indentation
(***) Indentation shall be used consistently to enhance readability throughout a program.
Each indentation should use at least two spaces. A comment line should be indented in
the same way as the following executable line of code. Statements in nested loops should
be indented so that all statements in the same nesting are indented by the same amount.
Statements in inner nested loops should be indented by a greater amount than statements
in outer nested loops.

GOOD: ***
 ! Loop over values of x and y
 ! Compute the sides of a right triangle
 ! Then compute the square of the hypotenuse

 DO i=1,5
 x = x_value(i)

 DO j=1,4
 y = y_value(j)

 a = x + 6
 b = y / 4.5

 c_squared(i,j) = a * a + b * b

 END DO
 END DO

SPSRB Common Standards Group

 13 Version 1.0
 6/18/2009

BAD: ***
 ! Loop over values of x and y

 DO i=1,5
 x = x_value(i)
 DO j=1,4
 y = y_value(j)

! Compute the sides of a right triangle
 a = x + 6
 b = y / 4.5

 ! Compute the square of the hypotenuse
 c_squared(i,j) = a * a + b * b

 ! Close the loops
 END DO
 END DO

BAD: ***
 ! Loop over values of x and y
 DO i=1,5
 x = x_value(i)
 DO j=1,4
 y = y_value(j)

 ! Compute the sides of a right triangle
 a = x + 6
 b = y / 4.5

 ! Compute the square of the hypotenuse
 c_squared(i,j) = a * a + b * b

 ! Close the loops
 END DO
 END DO

3.7 Nesting
(***) The nesting of parentheses in logical and arithmetic expressions shall be limited to
four (4) levels. If an expression requires a greater level of nesting, it shall be separated
into more than one expression.

GOOD: ***

SPSRB Common Standards Group

 14 Version 1.0
 6/18/2009

mu_s = COS (pi * sza / 180.)
mu_v = COS (pi * sva / 180.)
tan_s = TAN (pi * sza / 180.)
tan_v = TAN (pi * sva / 180.)

d = SQRT (tan_s * tan_s + tan_v * tan_v –

& 2.0 * tan_s * tan_v * COS (pi * relaz / 180.))

fac = tan_s * tan_v * SIN (pi * relaz / 180.)

cost = SQRT (d * d + fac * fac)/ ((1. / mu_s) + (1. /
mu_v))

BAD: ***

mu_s = COS(pi*sza/180.)
mu_v = COS(pi*sva/180.)
tan_s = TAN(pi*sza/180.)
tan_v = TAN(pi*sva/180.)

cost = SQRT((tan_s * tan_s + tan_v * tan_v –

& 2.0 * tan_s * tan_v * COS(pi*relaz/180.) +
& (tan_s * tan_v * SIN(pi*relaz/180.) * tan_s *
& tan_v * SIN(pi*relaz/180.)))) / ((1./mu_s) + (1./mu_v))

3.8 Headers

(***) Every new program unit shall contain a header. Designate information required in
the header with the following keywords:

a. NAME: The name of the program unit.

b. FUNCTION: A brief description of the program unit function (e.g., 1-2
sentences).

c. DESCRIPTION: A description of the program unit processing (e.g., diagrams,
PDL).

d. REFERENCE: The reference(s) to program unit design materials (e.g.,
requirements document, design document, standards, algorithm decisions).

e. CALLING SEQUENCE: The source statements necessary to invoke the
program unit.

f. INPUTS: A description of the program unit inputs (e.g., parameters, files).

SPSRB Common Standards Group

 15 Version 1.0
 6/18/2009

g. OUTPUTS: A description of the program unit outputs (e.g., parameters, files).

h. DEPENDENCIES: A description of the program unit dependencies (e.g.,
HW/SW dependencies, INCLUDE files, operating systems, initialization).

i. SIDE EFFECTS: A description of the program unit side effects.

j. ERROR CODES/EXCEPTIONS: Description of, or link to, the error codes
used in the program unit.

j. HISTORY: The revision history of the program unit.

3.8.1 Sample Header

!--
! Name: Noise
!
! Type: F90 module
!
! Description:
! Module that contains various subroutines related to the
! handling of the noise.
!
! Modules needed:
! - misc
! - IO_Noise
!
! Subroutines contained:
! - LoadNoise
! - ComputeNoise
! - NoiseOnTopOfRad
! - SetUpRandomGenSeed
! - GenerateNoiseErr
! - BuildMatrxFromDiagVec
!
! Data type included:
! - Noise_type
! - noiseInfo
!
! History:
! 2006 S.A. Boukabara IMSG Inc. @ NOAA/NESDIS/ORA
!
!--

Refer to more examples in Appendix A.

SPSRB Common Standards Group

 16 Version 1.0
 6/18/2009

3.9 Variable declarations
(***) Align each declaration type name.

Avoid extremely long or continuation lines in a declaration statement by using multiple
statements.

List several variables of a single type on a line alphabetically.

Explicitly dimension all arrays using parameters as much as possible to specify array
dimensions/sizes. We recognize that it is not always possible to do so.

Use of dynamic memory allocation is encouraged.

3.10 Check Return Values
(***) Check for error return values, even from functions that "can't" fail. It is
recommended that the following convention be used for error return values:

 A value of zero indicates the function completed successfully
 A negative value indicates the function failed
 A positive value indicates the function completed successfully but

encountered something unexpected.
 Include the system error text for every system error message.

Take special care with I/O statements since these are usually affected by events beyond
the control of the programmer. Include an item which causes control to be transferred to
the statement attached to that label in the event of an error. This must, of course, be an
executable statement and in the same program unit. For example:

READ(UNIT=IN, FMT=*, ERR=999) VOLTS, AMPS
WATTS = VOLTS * AMPS
rest of program in here and finally
STOP

999 WRITE(UNIT=*,FMT=*)'Error reading VOLTS or AMPS'
END

Similarly, handle the end-of-file condition when reading beyond the end of a sequential
or internal file.

Programmers should check the success of any dynamic memory allocation or
deallocation.

SPSRB Common Standards Group

 17 Version 1.0
 6/18/2009

ALLOCATE(x(N,N),STAT=alloc_stat)
If(STAT.eq.0)then
. . .

In the above example there is an error if STAT is not equal to zero.

3.11 No Hardcoding

In order to keep code as flexible as possible variables should not be hardcoded into
software. Global constants such as mathematical or geophysical constants, such as Pi or
the Earth’s radius, should be contained in a single constants file. Examples of software
elements that should not be hardcoded include:

 file paths
 temporal data (Year, Month or day)
 spatial extents (latitudes or longitudes)
 and many, many more.

SPSRB Common Standards Group

 18 Version 1.0
 6/18/2009

APPENDIX A

Sample Program compliant with General Programming Principles

!$Id: Noise.f90 1365 2008-06-24 16:02:13Z wchen $
!--

! Name: Noise
!
! Type: F90 module
!
! Description:
! Module that contains various subroutines related to the
! handling of the noise.
!
! Modules needed:
! - misc
! - IO_Noise
!
! Subroutines contained:
! - LoadNoise
! - ComputeNoise
! - NoiseOnTopOfRad
! - SetUpRandomGenSeed
! - GenerateNoiseErr
! - BuildMatrxFromDiagVec
!
! Data type included:
! - Noise_type
! - noiseInfo
!
! History:
! 2006 S.A. Boukabara IMSG Inc. @ NOAA/NESDIS/ORA
!
!--

MODULE Noise
 USE misc
 USE IO_Noise
 IMPLICIT NONE
 PRIVATE
 !---Publicly available subroutine
 PUBLIC :: LoadNoise,ComputeNoise,NoiseOnTopOfRad
 PUBLIC :: SetUpRandomGenSeed,GenerateNoiseErr,BuildMatrxFromDiagVec
 !---Publicly available data/types, etc
 PUBLIC :: Noise_type,noiseInfo
 !---Declaration sections
 TYPE :: Noise_type

SPSRB Common Standards Group

 19 Version 1.0
 6/18/2009

 INTEGER :: nchan !Number of
channels
 REAL, DIMENSION(:), POINTER :: CentrFreq !Center
Frequencies
 REAL, DIMENSION(:), POINTER :: rms !rms
 REAL, DIMENSION(:), POINTER :: nedt !nedt vector
 END TYPE Noise_type
 TYPE(Noise_type) :: noiseInfo
 !---Module-wide visible variables
 INTEGER :: ISEED=2
CONTAINS

!===
! Name: BuildMatrxFromDiagVec
!
!
! Type: Subroutine
!
!
! Description: Builds a matrix from diagonal elements
! contained in a vector. Off-diagonal are set to 0
!
!
! Arguments:
!
! Name Type Description
! ---
! - nchan I Number of channels
! - noiseRMS I Vector of diagonal elements
! - Se O Matrix with diagonal elmts
!
!
! Modules needed:
! - None
!
!
! History:
! 03-22-2007 Sid Ahmed Boukabara, IMSG Inc @ NOAA/NESDIS/ORA
!
!===

 SUBROUTINE BuildMatrxFromDiagVec(nchan,noiseRMS,Se)
 REAL, DIMENSION(:) :: noiseRMS
 REAl, DIMENSION(:,:) :: Se
 INTEGER :: nchan,ichan
 Se = 0.
 DO ichan=1,nchan
 Se(ichan,ichan) = noiseRMS(ichan)**2.
 ENDDO
 RETURN
 END SUBROUTINE BuildMatrxFromDiagVec

!===
! Name: LoadNoise
!

SPSRB Common Standards Group

 20 Version 1.0
 6/18/2009

!
! Type: Subroutine
!
!
! Description: Reads noise values from noise file and loads
! them into Noise structure called NoiseInfo
! (see definition on top of module)
!
!
! Arguments:
!
! Name Type Description
! ---
! - NoiseFile I Name of noise file
!
!
! Modules needed:
! - ReadNoise
!
! History:
! 03-22-2007 Sid Ahmed Boukabara, IMSG Inc @ NOAA/NESDIS/ORA
!
!===

 SUBROUTINE LoadNoise(NoiseFile)
 CHARACTER(LEN=*) :: NoiseFile
 INTEGER :: iu
 !---Open file containing radiance measurements
 iu=get_lun()
 OPEN(iu,file=NoiseFile,form='formatted',status='old')
 READ(iu,'(25x,i8)') noiseInfo%nChan

ALLOCATE(noiseInfo%CentrFreq(noiseInfo%nChan),noiseInfo%rms(noiseInfo%n
Chan),&
 noiseInfo%nedt(noiseInfo%nChan))
 CLOSE(iu)
 CALL
ReadNoise(NoiseFile,noiseInfo%CentrFreq,noiseInfo%nedt,noiseInfo%nchan)
 noiseInfo%rms(1:noiseInfo%nChan)=noiseInfo%nedt(1:noiseInfo%nChan)
 RETURN
 END SUBROUTINE LoadNoise

!===
! Name: ComputeNoise
!
!
! Type: Subroutine
!
!
! Description: Puts the noise elements contained in a structure
! into an independent vector
!
!
! Arguments:
!

SPSRB Common Standards Group

 21 Version 1.0
 6/18/2009

! Name Type Description
! ---
! - noiseRMS O Vector of noise values
!
!
! Modules needed:
! - None
!
!
! History:
! 03-22-2007 Sid Ahmed Boukabara, IMSG Inc @ NOAA/NESDIS/ORA
!
!===

 SUBROUTINE ComputeNoise(noiseRMS)
 REAL, DIMENSION(:) :: noiseRMS
 noiseRMS(:) = noiseInfo%rms(:)
 RETURN
 END SUBROUTINE ComputeNoise

!===
! Name: NoiseOnTopOfRad
!
!
! Type: Subroutine
!
!
! Description: Adds noise on top of the brightness temperatures
! Useful when doing forward simulations with CRTM
!
!
! Arguments:
!
! Name Type Description
! ---
! - nchan I Number of channels
! - TB I/O Vector of brightness
temperatures
! - NoiseErr I Vector of channel-based noise
!
!
! Modules needed:
! - None
!
!
! History:
! 03-22-2007 Sid Ahmed Boukabara, IMSG Inc @ NOAA/NESDIS/ORA
!
!===

 SUBROUTINE NoiseOnTopOfRad(nchan,TB,NoiseErr)
 REAL, DIMENSION(:) :: TB,NoiseErr
 INTEGER :: nchan,ichan
 DO ichan=1,nchan

SPSRB Common Standards Group

 22 Version 1.0
 6/18/2009

 TB(ichan)= TB(ichan)+NoiseErr(ichan)
 ENDDO
 RETURN
 END SUBROUTINE NoiseOnTopOfRad

!===
! Name: SetUpRandomGenSeed
!
!
! Type: Subroutine
!
!
! Description: Sets up the random generator seed. The seed
! value is declared in top section of this module
!
!
! Arguments: None
!
!
! Modules needed:
! - None
!
!
! History:
! 03-22-2007 Sid Ahmed Boukabara, IMSG Inc @ NOAA/NESDIS/ORA
!
!===

 SUBROUTINE SetUpRandomGenSeed()
 CALL RANDOM_SEED(SIZE=ISEED)
 RETURN
 END SUBROUTINE SetUpRandomGenSeed

!===
! Name: GenerateNoiseErr
!
!
! Type: Subroutine
!
!
! Description: Generates a random normal distribution noise
!
!
! Arguments:
!
! Name Type Description
! ---
! - nchan I Number of channels
! - NoiseErr O Vector of randomly
generated
! noise values
!
!

SPSRB Common Standards Group

 23 Version 1.0
 6/18/2009

! Modules needed:
! - None
!
!
! History:
! 03-22-2007 Sid Ahmed Boukabara, IMSG Inc @ NOAA/NESDIS/ORA
!
!===

 SUBROUTINE GenerateNoiseErr(nchan,NoiseErr)
 REAL, DIMENSION(:) :: NoiseErr
 REAL :: X
 INTEGER :: nchan,ichan
 DO ichan=1,nchan
 CALL GRNF (X)
 NoiseErr(ichan) = X*noiseInfo%rms(ichan)
 ENDDO
 RETURN
 END SUBROUTINE GenerateNoiseErr

 SUBROUTINE GRNF (X)
 ! Gaussian random number generated from uniform random number.
 REAL, INTENT (OUT) :: X
 REAL :: PI,R1,R2,X0
 PI = 4.0*ATAN(1.0)
 CALL RANDOM_NUMBER(HARVEST=X0)
 R1 = -ALOG(1.0-X0)
 CALL RANDOM_NUMBER(HARVEST=X0)
 R2 = 2.0*PI*X0
 R1 = SQRT(2.0*R1)
 X = R1*COS(R2)
 END SUBROUTINE GRNF

END MODULE Noise

	1. Introduction
	2. This Document
	3. Very General Programming Principles
	3.1 Program Unit Organization
	3.2 Program Unit Size
	3.3 Naming Conventions
	3.4 Input/Output:
	3.5 Readability
	3.6 Indentation
	3.7 Nesting
	3.8 Headers
	3.8.1 Sample Header

	3.9 Variable declarations
	3.10 Check Return Values
	3.11 No Hardcoding

	APPENDIX A
	Sample Program compliant with General Programming Principles

